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Slow flow past ellipsoids of revolution 

By D. R. BREACH 
Department of Mathematics, University of Melbourne* 

(Received 28 June 1960 and in revised form 11 November 1960) 

The results of Proudman & Pearson (1957) for a sphere are generalized to apply 
to  all ellipsoids of revolution both prolate and oblate. 

1. Introduction 
The two classical methods, those of Stokes (1851) and Oseen (1910), for finding 

approximations to viscous streaming at low Reynolds numbers have both been 
applied to the problem of determining the flow past an ellipsoid in a uniform 
stream. By using the first method Oberbeck (1876) obtained a first approximation 
for any ellipsoid at any orientation to a uniform stream. For the particular cases 
of bodies with rotational symmetry about an axis parallel to the stream the 
results can be expressed in terms of a Stokes stream function, $. Thus, for a 
prolate spheroid of eccentricity e and with semi-major axis of unit length in a 
stream of velocity U ,  Oberbeck’s result becomes 

r+e (““I] sin28, (1.1) 

where (r,  8, q5) are prolate spheroidal coordinates. Oseen’s method was applied by 
him to many similar cases the results for which are collected in his book of 1927. 
This paper gives the results of attempting to find higher approximations for 
slow flow past ellipsoids of revolution by a technique which combines Stokes’s 
and Oseen’s methods. This technique has been used by Proudman & Pearson 
(1957) and Kaplun & Lagerstrom (1957) to obtain higher approximations to 
the flow past a sphere and circular cylinder. 

The Stokes approximation breaks down in the outer region where the neglected 
inertia terms are comparable in magnitude with the retained viscous terms. On 
moving away from the body this region is reached when Rr = O( l), where R is the 
Reynolds number. In  the technique mentioned above the co-ordinate systaa is 
then strained by taking new variables p = Rr and Y ( p ,  cos8) = R2$(p, cos8). 
Y is chosen so that there are no first-order terms in R in the transformed equa- 
tions of motion. Expansions of the forms 

e(l-e2)r-&(l+e2)(r2-e2)log - 
$ = t U  ( r2 -e2 ) -  ” [e - w +  e2) 1% (-)I r - e  

m m 

II. = I: fn(R)$n(r,cos8) and Y = 2 Fn(R)Yn(p,cos8), (1.2) 
n=O n=O 

where 
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and Fo and fo can be taken as bounded for small R, are assumed for $ and Y. 
These are called the Stokes and Oseen expansions, respectively, after the leading 
terms in each. The no-slip condition on the body partially determines the 
$,. The condition that the solution must tend to the uniform stream far out 
partially determines the Yn. The $, and Y, are completely determined by match- 
ing the expansions (1 .2)  in orders of R as p becomes small and r becomes large. 
For this matching to be possible there must exist a region where the Oseen 
expansion and the Stokes expansion overlap. The existence of such a region is 
discussed by Kaplun & Lagerstrom (1957).  

For a prolate spheroid with its axis along the uniform stream the following 
results in terms of non-dimensional variables have been found 

B 
Y = $p2(1 -p2) -Rs (1 -exp [ - $ p ( l  -p)] )  ( 1  +p) +O(R2) (1.4) 

where B = 24e3(( 1 + e2) log ( Ee) - 2e]-l, 
1 - e  

p = cos 8 and the Reynolds number, R, is Uujv, where v is the kinematic viscosity 
and u is the semi-major axis of the ellipsoid. The functions U,(x) and V,(x) are 

where P,(y) and &,(y) are Legendre's functions of the first and second kind of 
the nth degree. X,, is a complicated function of r and e which is O(r-,,+4) for 
large r .  Its structure is given more explicitly below in Q 4. 

2. The equations of motion and the Oseen terms 
Prolate spheroidal coordinates are related to rectangular Cartesian coordinates 

by the equations x = J(r2 - d2) sin 0 cos 4, 
y = J(r2 - d2) sin 0 sin 4, 
z = r cos 8, 

where r is the semi-major axis of the prolate spheroid which passes through 
(x, y, x )  and 8 is the eccentric angleof that point with respect to the ellipse in which 
a plane through the axis of symmetry cuts the spheroid. 4 corresponds to the azi- 
muthal angle of spherical polars. The spheroids are confocal with foci (0, 0, k d ) .  

If the flow under consideration is that past a stationary prolate spheroid of 
semi-major axis a and eccentricity e with its centre at the origin and its axis of 
symmetry parallel to an otherwise undisturbed uniform stream of velocity U ,  
then non-dimensional (primed) variables can be defined by 

r = ar', $ = a2U$', p = p'. (2 .2)  
20-2 
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Further, if the foci of the ellipsoid coincide with the foci of the coordinate system 
then d = ae. The Navier-Stokes equations for incompressible, steady, viscous 
flow then yield, on dropping the primes and introducing a new dependent 

(2 -3 )  
variable I ,  ET$ = - ( r2-e2)(r2-e2p2)(1-p2)Z 

and 

where 
ET e ( r 2 - e z ) - + ( l - , u 2 ) -  a2 a2  

ar2 a h 2  

and ,!?: is the adjoint operator 

a2 a2 a a 
ar2 ap2 ar aP ( r2-  e2) - + ( 1  -p2) - + 4r - - 4 p - .  

The variables in these equations are called Stokes variables. The dependent 
variable I which has been introduced for convenience in solving the equations of 
motion can be identified physically as the vorticity at a point divided by the 
distance of that point from the axis of symmetry and may thus be called ring 
vorticity strength. It will have an expansion of the form 

If the Oseen variables, p, L, Y given by 

are used then the equations of motion become 

and 

By noting that terms in R2e2 in (2 .9)  and (2.10) may be neglected if a solution 
correct to O(R) in R is sought, the analysis for the first two Oseen terms reduces 
to that for the sphere case. The constant B appears in (1.4) as a result of matching 
with the Stokes expansion. The Oseen terms will therefore not be furtherdiscussed. 

3. The leading Stokes terms 

I ,  finite on p = k 1 and bounded for small R at large values of r is 
Iffo(R) = 1 then from (1 .2) ,  (2 .3 )  and (2 .4)  an appropriate general solution for 

where T = re-l and the Bn are constants. By use of the recurrence relationship 
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and the variation-of-parameters technique this leads to 

309 

where 

and B, = B-, = B-, = b. 
This satisfies the boundary conditions @ = @r = 0 on r = 1. Because of the 

behaviour of Vn(7) at infinity the integrals V F ( T ) ,  ui(7) and [Vn(x)I2dx are con- 

vergent as 7 -+ 00. The integrals u", u i 2  and Un(x) V,(x)dx are of orders 

log 7 ,  7, and T ~ ,  respectively. However, in (3.3) they are multiplied by K(T) which 
is O ( r n )  and therefore far out the product of K(T) and its cofactor in (3.3) is 

When the integrals in the cofactor of U,(T) in (3.3) are evaluated at  their 
upper limits the result is a function which is O ( T - ~ ~ + I )  for large 7. When this is 
multiplied by U,(T), which is O(T"+~) ,  the resulting contribution to $o is a term 
O(T-"+,) and this is not large enough to affect the matching process. However, 
when the integrals in the cofactor of U,(T) are evaluated at their lower limits 
the result is a constant. This implies that if $, is expressed in Oseen variables 
then the function U,(T) with its cofactor will contribute a term O(R-"+l) to Y. 
But Y = O(1) for'small R. Therefore the constant must be zero for n > 1. Hence 

Ie' 1 

SeI. 
O(7-2n+4 )* 

-B,Sm M d z  = 0 (n 3 2) ,  (3.4) 
.-1 n(n + 1) 

since all the integrals vanish at the upper limit if that limit is infinite. 
Clearly the infinite set of linear equations (3.4) can be divided into two inde- 

pendent subsets, one involving all the odd B,'s only and the other involving all 
the even B,'s only. The set for the odd Bn's is not complete because the contribu- 
tion of Yo to @, namely +r2( 1 -p2), has not yet been matched to O( 1) in R with 
@,. When this is done a further equation for B, and B3 is obtained. This is 
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When the help of the recurrence relationship (3.2), which is true in general for 
V,(7), the case n = 1 being exceptional, it can now be shown that for the odd B,’s 

B,+,= ( 2 m + 2 ) ( 2 m + l ) ( h + 3 ) ~ - - M  m--I C __ (2s)! (49+5) ---) 
s=o (2s + 4)! Vgm+,( 00) ’ 

where 

An investigation of the convergence of the odd terms of I?, shows that the only 
solution which remains bounded in the field of the flow is that for which M = 0. 
It then follows that 

( 3 4  
B, = eB and B,+, = (2m+2)(2m+l) (4m+3)T.  B, 

A similar investigation for the even B,’s shows that the only possible solution t o  
fit the physical conditions is 

B,, = 0. (3.7) 

The cofactor of U,(T) in (3.3) then vanishes identically for n 2 2 by (3.6), (3.7) 
and (3.2). The same is true of the cofactor of V,(7) (n 2 2) and by the special case 
of the recurrence relationship for V i ( 7 )  when n = 1 it is found that 

(3 ’ 

agrees with Oberbeck’s result (1.1). Further, as e -+ 0, B -+ 9 and e-’V,(7) -+ Qr, 
so when the eccentricity is zero and the body is a sphere (3.8) simplifies to the 
classical Stokes result, 

Po =: (3.9) 

4. The second Stokes terms 
If it assumed that f,(R) = R then the equation for 1, is 

If $,, = T(7) (1 -pz )  then the Jacobian in (4.1) can be written 

d 7T(7) d 
d7 ( 7 2 -  1) 

where Km(7) = 2(+ - 1) Qm(7) - { -) + Gh(7) d7 {(+ - 1) T(7)).  (4.2) 

The appropriate general solution for 2, is then found by variation of parameters to 
be 
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where C, is a constant and Yn(7) is such that 

and Yzm+1(7) = 0. (4.4) 
For large 7, Yzrn(7) = 0 ( ~ - 2 = + 2 ) .  

then 
The general solution for $, satisfying the boundary conditions on the body is 

where 

- -  
and C, = C-, = C-, = 0. 

As in $, the constant arising from the evaluation of the integrals in the co- 
factor of Un(7) in (4.5) at their lower limits must be zero for otherwise $1 would 
contain terms and would therefore contribute terms O(R-2m+1) for small 
R to Y. This again leads to two infinite sets of linear equations for the constants 
Cn, one for the odd Cn’s and one for the even ones. For the latter the only solution 
for which 1, remains bounded near the body is given by 

(2m + 3)  (2m + 2) (4m + 5 )  c,rn 
C2rn+2- - (2m+ - 1) ( 2 . . > ( 4 m T  

and 

By definition &m+l(~) = 0 which means that the odd Cn’s satisfy the same 
equations in general as do the odd Bn’s in $,. There is a further equation for B, 
and B, which comes from matching the term in p2 in when expressed jn Oseen 
variables with the term in p2 in F,(R) Y,. This gives 

~ , / ~ 1 ~ ( 5 x 2 -  l)~(x)dx-+c3v~(co) = AezB. (4.7) 
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It is then found that the only solution for the odd C's is 

(4.8) 
C - eB2 - and C2m+l= ( 2 m + 2 ) ( 2 m + 1 ) ( 4 m + 3 ) 6 .  Ql 

'- 24 

The equation (4.5) then becomes 

where X2m(r, e )  stands for the coefficient of U2,(p) in (4 .5) .  

5. The third Stokes terms 
Proudman & Pearson in their treatment of the sphere case show that the 

assumptionf,(R) = R2 leads to a particular integral for $, containing a term in 
r210grU,(p). They infer from this that the assumption about f2(R) should be 
amended to 

and that 92 is then a multiple of $o. It is easy to show by differentiation that if 
the particular integral for $, contains a term in rzlog rU,(p) then this term arises 
from a term in T-~U,(~U) (1 -p2)-1 on the right-hand side of the inhomogeneous 
equation for 1, and only from a term of this form there. This suggests that in the 
present case it is necessary to expand the right-hand side of 

f2(R) = R'log R (5-1) 

(which equation arises if f2(R) = R2) in powers of r and to select the term in 
~-~U,(pu) (1 -p2)-l, a knowledge of whose numerical coefficient enables one to 
determine what multiple of $,, the term $2 must be. 

On performing the expansion it is found that the right-hand side of (5.2) con- 
tains the term 

(5 .3)  

and therefore, iff@) = R2, the general solution for $, will be of the form 

other functions of ,LA and r not involving 
the combination r2 log T( 1 - ,LA,) 

(5.4) where D, is a constant. 
But when this is expressed in Oseen variables it will contribute a term of order 

R2 log R to Y and there are no such terms in the expansion of Y for small p. 
If there were such terms there would be terms of order R log R in L and these 
terms could not be matched since there are no terms of order R log R in 1. Therefore 

e2B2 
D1= - - 720 log R + O( 1) (5.5) 

and it must be assumed not that f2(R) = R2 but that (5.1) holds. 9, is then a 
multiple of $o and by (5.5) 
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6. Oblate spheroids 
The equations of motion for an oblate spheroid can be derived from those for 

the prolate case by replacing r with ir. The appropriate general solutions then 
involve U,(~T) and V,(i7) which, from considerations of parity, are either real or 
purely imaginary. The boundary conditions on the surface of an oblate spheroid 
will be slightly different from those in the prolate case if the original definition 
of the Reynolds number is to be maintained throughout. The major axis of the 
axial section of an oblate spheroid is normal to the axis of symmetry whereas 
in the prolate case it is coincident with it. The member of the confocal family 
whose semi-major axis is unity is specified by r = ,/( 1 - e2) and consequently the 
boundary conditions on the body become 

e 

0.0 
0.1 
0.2 
0.3 
0.4 
0- 5 
0.6 
0.7 
0.8 
0.9 
1.0 

B (prolate) 

9.00 
8.96 
8.85 
8.67 
8.40 
8.04 
7-56 
6.95 
6.13 
4.96 
0.00 

b (oblate) 

9.00 
8.99 
8.96 
8.93 
8.85 
8-76 
8.64 
8.50 
8.32 
8.09 
7.64 

TABLE 1. Values of B and b.  

With these modifications the analysis can proceed as before to give 

where 

br ib 
(r2+e2)--+-G(ir/e) 6 6e 

e,/(l-e2)+(2e2-1)arctan- 

When e + 0, b -+ 9 and the Stokes result is recovered as before. 
One can proceed to higher approximations as in the prolate case the only 

essential difference in the analysis being the value of the constant band the change 
in the lower limits of the particular integrals in the Stokes solutions due to the 
change in boundary conditions on the surface. 

It is of some interest to calculate the constants B and b, for these give a rough 
indication of the degree of departure of the flow from that about a sphere taken 
as a norm. Values of B and b are given in table 1. 
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7. The drag coefficient 
consists of a multiple of $o 

plus a function which is odd in ,u and which therefore makes no contribution to 
the drag, the calculation of the drag coefficient Co is greatly simplified. It is 
found that for the prolate case 

By observing that $2 is a multiple of $o and that 

BB B2 
24  360 

1 +-- +-- R210g R + O(R2) 
2nB 

0 -  

and for the oblate case 

. 1 
The first two terms in each of these were given by Oseen (1 927). 

If e -+ 1 in (7.2) then the drag coefficient for this disk is 
The oblate case e = 1 corresponds to a circular disk broadside on to the stream. 

(7.3) 

For prolate bodies the case e = 1 corresponds to a needle of length two units 
lying along the axis of symmetry. From (7.1) the drag on this needle is predicted 
to be zero. This is a rather surprising result for it implies that although the fluid 
is brought to rest along a finite line segment by the imposition of the boundary 
conditions this has no effect on the uniform stream as a whole. Looked at in 
another way this means that any number of these needles could be placed in and 
parallel to a uniform stream without disturbing it. Of course, this needle is a 
highly idealized 'case, being an entity of finite length but no breadth. Further, 
for a body whose greatest diameter is comparable with the distance between 
neighbouring molecules of the fluid, the original equations of motion can scarcely 
be expected to hold but should be replaced by equations taking into account 
the properties of the medium considered as a collection of particles rather than 
as a homogeneous fluid. 
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